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Environmental Benefits of Chemical Propulsion

The benefitsof chemical propulsionare tightlylinkedto the measurement and

understanding of globalclimate change and Earth Observation. Anthropogenic and

natural influencesaffectingthe Earth system are recognizedinternationallyas having

potentiallyadverse,globalconsequences over the long term, threateningthe current

standards for qualityoflife.Measurement of fossilfuelresources,fish,wildlife,

metals and minerals,once performed with dousing rods and explorationpartiesmay

now be accomplished via satelliteon a globalscale.Thus, the availabilityof chemical

propulsion allowsa measured, sustainableutilizationof Earth'srenewable resources,

and an informed utilizationof the non-renewable ones. The state-of-the-arttechnology

available,enablesa qualityoflifeto existthathas never beforebeen possible.The

consequent human impacts to the environment are alsoat previouslyunseen levels.It

isonly through effectivestewardship ofthe globalresources,which mandates

comprehensive measurement capabilities,that we can understand and guide makind's

occupationofthe Earth.

Itisimportant to comprehend, in context,the issuesassociatedwith our current

understanding of globalchange phenomenon. While the implicationsof any shiftin

climate are far reaching and without regard for internationalboundaries,myopic

decisions,based on incomplete knowledge ofour Earth system, can ultimatelydo more

harm than good to our environment and economy. Given the current economic

realities,significantclimateshifts,ifthey do occur,willhave globalconsequences and

not be limitedtothe specific,climateaffectedregions. In response to these identified

globalchange issues,a number of research and coordinatingbodies for Earth science

disciplineshave emerged throughout the world.[1,2,3,4]The nature ofthese issuesis

quite complex, as are the scopes of the international efforts. Figure 1 represents, in

summary form, the international organizations involved and their associated prime

purposes.

The NASA publication, "Earth System Science, A Closer View," provides a

comprehensive and concise picture of the environmental interactions which occur on

time scales ranging from decades to centuries.[5] This conceptual model, shown in

Figure 2, attempts to identify relationships between extrinsic variables and the

predominant chemical reactions which control our environment. It also serves to

portray the organized structure required for assessment of these interactions by the

scientific community. The two largest rectangles represent the Physical Climate

System and the Biogeochemical Cycles. Within these two broad categories are smaller

rectangles representing the major subsystems. The arrows denote pathways and

information flows necessary to integrate the subsystems and characterize the complete
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Figure 1: International Global Research and Monitoring Organizations
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Figure 2: NASA's Conceptual Model of the Earth System on Timescale, s of Decades to Centuries
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EnvironmentalBenefitsof ChemicalPropulsion

Earth system.The ovalsrepresentsysteminputs and outputs,includingboth naturally
and anthropogenicallyinducedsources.Eachsubsystemcomprisesa focusedscientific

disciplinearea. Thesescientificareasare representedby subroutineswithin an

integratedGlobalClimateChangeModel (GCM)to allowpredictiveanalysisof multi-

variant scenarios associated with global change.

GCMs analytically model the natural and induced forces within the atmosphere,

their resultant consequences and, ideally, their interactions with the Earth's land,

oceans and solar boundaries.[6] These models predict probable outcomes and responses

of the Earth system due to perturbations. For instance, sensitivity analysis, potential

anthropogenic impacts and natural disaster scenarios may be assessed, and the

resultant data evaluated for use in policy and legislative decisions.

The practice of utilizing computer models to study complex systems is

widespread throughout the engineering and scientific communities. However, it is a

commonly accepted fact that the performance of a model is dependent not only on the

completeness, accuracy and precision of the representation and mathematically

modeled interactions, but also on the data which specifies the variables. An

engineering standard requires that models be verified prior to their accepted usage.

Unverified model data is not typically considered acceptable information. However, if

potential consequences are so dire as to preclude time for model verification and

validation, the data can be treated as preliminary information, but only with the

acceptance of a high level of risk.

Although they represent the best available technology, the current models

inadequately account for all of the variables and interactions required to accurately

predict the environment of the future.[7] This inadequacy is due to several factors: the

tremendously complex nature of the Earth system, a lack of appropriate data, and the

general state of the science. Furthermore, only a select few portions of the GCMs

remain verified, and then only in the non-interactive portions. For example, one

relevant measure of the model verification status is evident daily in the short- and long-

term weather forecasts. However, the effects that weather has on the ocean currents and

the Earth's overall energy and moisture balance are neither understood completely nor

incorporated into the models.

Those who espouse elimination of satellite monitoring systems in favor of

ground- or air-based systems do not have a clear understanding of the complexities of

these issues. Some representative usages and requirements for satellite usage will

serve, for the purposes of this document, to illustrate these complexities.
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Environmental Benefits of Chemical Propulsion

Chemical propulsion has had a tremendous impact in the meteorological field.

The ability to launch satellites, afforded by the existence of chemical propulsion, has

enabled the meteorological community to develop a global meteorological satellite

network. This network, consisting of polar and geostationary orbiting satellites,

complemented by a ground-based network of sensors, is operated by the WMO.[8] When

combined with developments in satellite remote sensing technology, this network

provides continuous, worldwide monitoring of the atmosphere. The data generated by

this network is responsible for the present validation of this segment of Global Climate

Models. It further enables meteorologists to identify, accurately predict and track

atmospheric conditions. This ability to forecast and track weather conditions translates

directly into economic savings and/or gains for many industries.

These economic gains are evident within the shipping industry. An ocean liner

transporting cars from Japan to the United States, for instance, has advanced

knowledge of the weather ahead on its course. If a typhoon forms in the Pacific Ocean,

the company, because of satellite technology, knows the predicted course and intensity of

the storm. If the ship is threatened by the storm, it can alter its planned course to avoid

the weather or return to port, without jeopardizing the crew or cargo. The aviation

industry has also realized significant economic benefits due to satellite technology. As

in the case of the shipping industry, scheduling and routing of commercial flights are

largely contingent upon the weather. Thus, human lives and millions of dollars of

freight are saved from potential damage or destruction because of our ability to forecast

the weather accurately.

The complexity of the Earth system processes presents perhaps the largest

challenge to scientists modeling the system. Scientists are aware of some mode_g_ ,_

unknowns, for example: How does vegetation affect the local and global climate, and

vice versa? How sensitive is the climate to changes in "radiatively important trace

species?" How does the ocean circulation respond to atmospheric forcing? How will

changes in ocean circulation affect surface temperature distribution? How will the

uptake of heat by the oceans affect the alleged global warming? How much is climate

sensitivity affected by sea ice and cloud?[9] In order to answer these questions, and

many others, pertinent information is necessary. For instance, accurate measurements

of the absorption of long-wavelength radiation emitted from the Earth's surface by

various trace gases, the distribution of water vapor in the atmosphere, associated

circulation and temperatures are some variables needed to characterize the physical.

climate system. Further information, including sea-surface temperature and the

resulting wind patterns, radiation measurements and cloudiness data all contribute to a
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Environmental Benefits of Chemical Propulsion

more complete identification of the complex land-sea interaction processes. Until the

gaps in existing knowledge are filled, investigators must make numerous assumptions

in Global Climate Models regarding the variables' influence on the processes and their

interactive roles.

The modeling unknowns can be treated in sensitivity analysis to allow resource

prioritization for keying in on the critical areas, as noted above. These areas must then

be assessed with proper validation techniques. This, requires the gathering of

significant quantities of relevant data in order to improve our knowledge of the Earth

system. The use of satellites is critical to acquiring this data. Satellites afford us the

unique opportunity to monitor large areas of the earth at one time, while simultaneously

collecting and transmitting the real-time data. From the vantage point of space, we can

study the synoptic atmospheric dynamics. This information allows scientists to update,

validate or change the fundamental assumptions made in the global climate routines.

Thus, we will push the outer limits of scientific knowledge in the field of atmospheric

and environmental sciences in order to gain understanding of the world on which we

live.

No one single orbit can provide a complete mapping of the Earth.[10,11]

Therefore, a coherent selection of satellite missions and placement, combined with polar

platforms and Space Shuttle flights is necessary to achieve the defined scientific

objectives via remote-sensing techniques. Current and planned space programs,

particularly within NASA's Mission to Planet Earth, are designed to address some .of

these issues.

However, satellite data alone is not enough to ensure accurate measurement of

Earth system variables. It is necessary to monitor and record environmental data in

conjunction with in situ and low altitude observations in order to completely

characterize a system parameter. In situ observations are useful for identifying land

characterizing process variables which are more efficiently measured from space.

Unfortunately, in situ measurements are often constrained by local effects. Humidity

factors, precipitation, physical location (whether the sensor is near a grove of trees on

next to asphalt ), albedo, and so forth, all affect the in situ measurement. This site

variability is difficult to account for in large scale measurement efforts extending over

multiple geographical regions. Moreover, in situ observations are crucial for remote-

sensing calibration and validation. Typically, sensing devices require periodic

maintenance and calibration. A blend of space-based and in rsitu sensors ensures that

sensor drift and malfunctions will be identified and corrected in a timely manner --

without resulting in excessive data loss. Low altitude data collection is also useful for
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characterizing complex Earth processes.[12] It provides intermediate information on

the atmospheric processes, as well as performing the calibration and validation

functions for space-based remote-sensors. Both in situ and low altitude observations

provide discrete data points, and therefore do not furnish a concise, dynamic picture of

the global climate and interactions. The use of satellites is then critical to the

measurement and validation of the GCMs. Chemical propulsion is the only efficient

and cost-effective mechanism we have to utilize satellites.

Satellites have a multitude of uses in commercial ventures as well. The advent

of the Global Positioning System (GPS) is a good example of the commercial use of

satellites, particularly in the aviation industry. The GPS uses a series of satellites to

triangulate the position of an object or location, in this case, of an aircraft, equipped with

an encoding receiver, and outputs the global coordinates of its position. This

revolutionary aircrait tracking system eliminates the reliance on the present system of

radar and tracking stations. Because of GPS, transoceanic airline flights can now

follow a great circle route rather than flying within suboptimal tracking zones. It is

estimated that this will save millions of dollars per year in fuel costs for transoceanic

flights alone!

The total impact of the GPS will not be fully realized for many years. Its

potential, however, is extraordinary. In addition to the aviation industry, the GPS has

beneficial applications in diverse fields ranging from agriculture, environmental

management, mining, and surveying to maritime and military operations. To operate,

the GPS requires the unique perspective and range of observation that is possible only

from the Earth's orbit.

In conjunction with this new technology, entire industries are being created. A

similar phenomenon occurred two decades ago, during the initial development of

satellite technology. The demand for commercial products such as cable television and

satellite dependent cellular telephones was spawned by the availability of affordable

vehicles to launch the necessary satellites. Industries which did not exist fifteen years

ago now employ thousands of people and are valued in the billions of dollars. This use

of satellites is achievable only through the safe, cost effective, commercial availability

of chemical propulsion. Advocates who envision non-chemical, non-polluting methods

for placing satellites in orbit do not have an understanding of the salient issues.

Propulsion may be thought of as the process of changing the motion of an object.

Balloons, planes and rockets all serve to change the motion of their payloads, placing it

either higher in (the case of balloons and planes) of outside of (in the case of rockets) the

Earth's atmosphere. The atmosphere is generally broken up into four zones: the
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Troposphere (0 - 20 Km above sea level), the Stratosphere (20 - 50 Km above sea level), the

Mesosphere (50 - 80 Km above sea level) and the Thermosphere (80 - 300 Km above sea

level).[13] Only rockets can raise payloads into the thermosphere; the highest of high

altitude balloons can raise payloads into the mesosphere. For the most part, jet planes

are limited to the stratosphere; although, the lower levels of the mesosphere are

attainable for limited systems.

The reasons that only rocket propulsion is viable for lifting payloads into the

thermosphere are directly related to both the characteristics of the thermosphere and the

velocities required to enter Earth orbit. The flight of a launch vehicle or space booster

into orbit involves complex interactions of thrust, drag, gravity, atmosphere, winds,

vehicle and payload weights, and vehicle efficiency and performance. The ascent flight

profile is more analogous to a road trip by a delivery truck or the cross country flight of

an airliner than the flight of a golf ball driven down a fairway or a projectile fred

from a cannon. It is not only the total energy available to the vehicle in the form of

propellants, but the judicious application of that energy which makes flight into orbit

and deep space possible at all. Performance efficiency, or the rocket equivalent of gas

mileage is called specific impulse (Isp). Specific impulse is calculated by dividing the

total vehicle thrust by the total propellant flowrate.

Consider that a satellite in low earth orbit has a constant force (gravity) pulling

it towards earth; the force of gravity is then balanced out by the centrifugal force of the

vehicle. At the earth's surface, the required velocity to escape is 11,179 m/sec; at roughly

300 miles from the surface, the orbital velocity is approximately 7400 m/sec.[14] Today's

technology precludes flight through the lower atmosphere at these velocities --

aerothermal heating alone would melt leading edges or nose cap materials. The

following arguments reveal why no systems other than chemical propulsion seem

feasible for placing satellites into earth orbit_

High thrust is required for a booster to rise from its launch pad, which is also

when the vehicle weight is at its peak. These high thrust levels, however, are not

necessary after the vehicle has passed through the dense lower atmosphere.

Intermittently, thrust must be reduced during the flight, particularly during the highest

aerodynamic loading, "max q," and at required points to control the acceleration loads,

"g limits." A liquid engine can be throttled, and a solid motor can be designed to

reduce thrust levels during portions of its burn. A typical rocket flight profile, such as

the one shown in figure 3, is analogous to the operation of a truck stepped at a traffic

light, then traveling up an entrance ramp onto a freeway. As the light changes to green,

the driver begins to accelerate by using lower gears and pushing the accelerator to
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Figure 3: A Typical Rocket Flight Prot'de
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Environmental Benefits of Chemical Propulsion

increasethe engine output. As the truckgains speed,the need torun the engineat the

high power levelsdiminishes,and the drivershillsintohigher gears. By the time the

truck reaches highway cruisingspeed,the engine isrunning at a power levelwhich

produces about 20 -25% ofitsmaximum horsepower.

Propulsion systems alternativeto chemical propulsionhave been and are being

studied,but none have demonstrated the versatilitythatchemical propulsionexhibits.

Energy can be suppliedby both electromagneticradiationand nuclear reaction.Force

fields,gravitationalor magnetic,have been utilizedforlimitedtypes ofpropulsion.

Nuclear energy sourcesinjectheat to a working fluid,typicallyhydrogen, which then

transferskineticenergy in the form of ejectaout of a nozzleto providepropulsion.

Nuclear propulsionisa specialcase ofliquidpropulsion.The high mass of the reactor

and the low densityofthe hydrogen gas penalizeitsthrustcapability,making it

unsuitableforearth-to-orbitapplications.However, nuclear propulsionprovides a very

high specificimpulse and consistent,long duration energy source;thus itis suitablefor

interplanetarymissions where totalimpulse, not thrust,is a prominent discriminator.

Similarly,electricpropulsion provideslow thrust,long duration propulsioncapability.

Electrostaticand ion propulsiondo not involvethe expansion ofgas in a nozzle.

They provide electrostaticfieldaccelerationof ions,typicallyxenon, that resultsin

vehiclethrust. Solar energy isusefulin space,but alsoprovidesa low thrust,high Isp

type system. The Sun isthe sourcefor a solarsail,which isexternalto the vehicle.

These type systems are usefulforattitudecontrol,but followingthe rationalecitedabove,

they are not credibleforuse in earth-to-orbitapplications.

Earth-based accelerators,such as cannons and railguns,are alsoalternative

sourcesforsmall payloads to reach orbitalvelocities."The energy,however, is appliedat

extremely high levelsfor very shortintervals.The method produces severeacceleration

loads,or g-forces,on the payload. Furthermore, the high initialvelocitiesattained

cause extreme aerodynamic heating and loads. Additionally,unless the payload has its

own rocketmotor, the varietyofattainableorbitswith a cannon or railgunisvery

restrictive.The laws ofphysicsdictatethat these orbitscannot have a perigeehigher

than the elevationofthe launch site.

Advanced concepts, such as ion,solar,or photon propulsionexhibitthe opposite

problem: extremely high efficiencies,but prohibitivelylow thrustlevels.These

propulsionsourcescannot produce the thrustnecessaryto liftoff,and theirphysical

configurationsare anything but aerodynamic. There are potentialapplicationsforthese

systems in interplanetaryflightand beyond, but they are unsuitableforthe journey

from a planetarysurfaceto orbit.Itisentirelypossiblethat no scheme willever
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supplant chemical propulsion in boosting a vehicle on its initial escape from the earth's

surface into space.

This paper has thus far identified the necessity of chemical propulsion to satellite

usage and some of the benefits we accrue through our ability to monitor global resources

and patterns. The remainder identifies, in summary fashion, how the information

gathered via satellite is utilized to affect national and international policies.

Undeniably, science has already forced extensive political action in response to

its theories on global climate change. While NASA is not a policy setting agency, we do

play a major role in the creation of legislation. NASA conducts science missions and

generates much of the data necessary for inputs to Global Climate Models. It is

understood within the scientific community that these rudimentary GCMs produce

results which are only as accurate and complete as the information which goes into

them.

The data and output from these models are utilized by policy-makers to develop

and establish environmental laws and regulations. Environmental legislation is

initiated in the Congress. Through its Office of Legislative Affairs, NASA will review

proposed legislation, when requested, for its technical content and merit.[15,16] Again,

NASA does not set environmental policy, it does, however, attempt to provide the most

accurate information available to the appropriate lawmakers. It is the responsibility of

the scientific community to ensure that policy-makers are aware of the fidelity of these

climate models and the resulting limitations of global climate analysis and prediction.

Policy-makers, in turn, must make prudent and judicious decisions based upon

information available today; with the understanding that as the state of the science

matures, so will our understanding of the earth's environment.

The scientific community has identified and acknowledged shortfalls in our

knowledge base and in climatic model inputs. In order to remedy these shortcoming,

we require large-scale and long-term monitoring of the environment. The information

required is dependent upon the continued utilization of chemical propulsion to launch

satellites and experiments to gather relevant data. Since models are the basis for

setting environmental policies, it is both logical and imperative that we continue to

support NASA's proposed course of action.

Chemical propulsion, like all environmentally conscious industries, does

provide limited, controlled pollutant sources through its manufacture and usage.

However, chemical propulsion is the sole source which enables mankind to launch

spacecraft and monitor the Earth. The information provided by remote sensing directly

affects national and international policies designed to protect the environment and
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enhance the overallqualityoflifeon Earth. The resultantofchemical propulsionisthe

capabilityto reduce overallpollutantemissions to the benefitof mankind.
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